ISEUED BY DRFENSE COUNSEL, STATE OE TENN。 \quad. JOHN T. SCCPEABO
This dooument is for refese when it has becore completely a pert of the count reoord, it is aconptad oy newepapers san corraeponcento with the comdition sra axplode underetanding
 to in any martilit is astinits? rolaegs. lt may he anend-

STATEMENT BY WILBUR A. NELSON, (State Geologist of Tennesee.)
x (Biography.---Wi)bur A. Neleon is State Geologiet of Tennessee, president of the American Assuciation Of State Geologists, past president of the Tennesese Academy of Science, chairman, Executive Committee Southern Appalachian Power Conference 1923, member of the Executive Cominttee of the Division of States Relations of the National Research Council, member of the Council of the Americen Engineering Council, and president of the Monteagle Sunday School Assembly, of Monteagle, Tennessee, the leading interdenominational Chataugua and summer resort in the south, founded 43 years ago, and after September lst, Corcoran Profese or of Geology and head of the department of Goology, University of Virginia and State Geologist of Visginia. He received the degres Bachelor of Science at Vanderbilt Univereity, and the degree Master of Arte at Leland Sanford University. He ha held responsible positions with commercial firms as well a. in the service of the tate. He is a fellow of the American Association for the Advancement of science, a fellow of the Goological Society of America, member American Institute of Mining and Metalurgical Engineers, American Ass ociation Petroloum Geologiste, Seismological Society of America, and other organizations. He has published a number of papers on geological and related subjecte, both acientific and of a popular nature.)

The different layers of rock which form the eurface of the earth unfold a remarkable etory of evolution. These rock layers may be read as, clearly as the leaves of a book, and they are the book which tells the true history of the earth;and the buried remaine of animal and plant life which they contain
likewise how the rise of life and its development on this
earth. All forms of life have chenged and developed to meet the condition which have exieted on the earth, as it has developed to net the conditiors which have ben doveloping from the beginning of geolegical time.

Tenneses is an isel plew in which to study and learn the story of the rock levors which have beon laid down,from the

earliest times in which any life existed up to the present. Inife forme guitable fur one period of the earth's history, proved unsuitable for another period, and eo new forms, therefore, evolvod through natural ceusse。

This is not a new tudy in Tennessee asolocy and its study of buried animsl and plant remains has be on taught in this stats since 1828, at which time Gorard I'roost, one of the foundsre of the Philadelphia Academy of Science, was blected profeseor of Geology at the Univereity of Nashville, and thrge years later was electsd State Geologist of Tennesses. From that dats to the pressnt timo, this scionce, cealing with the age and study of the earth, and its rocke and the buried life which they contain, has boen continuously taught in tennesses.

Such teaching could not have been carried on through 97 years of time, unless the teaching of evolution hed been parmittad as it was permitted by our religious ancostore who formed this state.

We know that streame and rivers car ry sediment; that muddy waters are full of the soil of some field, washed into a nearby stream by a hard rain, and some such soil, when it once gets into a etrsam, etarts on a long journey to the ocean. Moet of the streems in this eection are muddy for many monthe in each year, and this mud, which is the soil weshed from oux gulliad hilleides, in this particular case, gobe dow the Tennasses River, into the Missiosippi River and to the Gulf of Mexico.

We know that at the mouth of the Miasisosinpi River the sediments brought down by thia river are dspositad oo rapidly that land is formed which is extending out inte the Gull of Mexico at the rats of meny feet a year. As a rule, these parcesses of weathering of rocke to produce soil., of arosion of thin

Nolson- $-?^{2}$
o 2 , and of doposition thie tanopontod oil through rivers into some nearky sea or cosan: takee place so slowly, as time je generaly meas ed, thas ona only 93 through detailed and ecientiluc obe vation the raoults within our ovm lifatime. But at the delta of toe Miseisoippi River, this very process is taking placs so rapiliy that any one can eesily measure it year by year and can underetand that these same procesese have been taking place through all geologic time, and in each and every part of the world.

We also know that practically all of the earth has at some time or other, been covered by water, and in these ancient seas, life has existed, which has left ite reord to us in fossil form. It must, however, also be understood that large parts of our present water arese were at some period in past geologio time also land areas. These sas have come and gone over limited areas of the earth's surface many times during the geologic history of the sarth.

We know that originally the mouth of the Mississippi River was near Cairio, Illinois, and that all of the Missiseippi Valley, as we now know it, was at that time (which was the close of the Cretaceou Period) a part of a much larger Gulf of Mexico, than the one that now exiets. All of West T ennessee, during this time, was in a northern extension of the Gulf of Mexico, and the fine china clay deposite of that section were laid down in shallow water at the time tropical plants flourished in that section.

East Tennesese is made up of many layers of rocke, limestone, shal and sandstone, all of which were likewise laid down under water, and many of these layers contain the remains of animal and plant life. Some of the oldset rocks which contain animal life are founa n Fiset T enness se. They are known as Cambrian rocks, and in those rocks occur the first abundantromains of
140.am-....
cas lorn of lifo. This was the age of the sarly invertebrates. These xoks are well exposed to the asst of Dayton in the East

Then camo the time inctavel which the geojogiat calle the orbovicjen, the time when primitjo fitehes, corals, and land plants oame into erietence. Some of these first corala in fossil form have been fouid. in the westorn edge of Dayton. Shis time interval was Eollowed by encthor sorics of rooke which, in East Tennessee, contain the zed iren ore deposite whichere used by the iron furnaces of this asution. The rooks of this age are known as the Silurian and dusing this time life furthar deve? opad and socpjons and lung fioheg oma into oxistenca.

The gexies goea un. Layer afbel layar of rooks vers laid dow, oach series of thich has been given a name by geologiats oo that they can bo easily referred to. Nsxt ceme the Great Age of fishes, and their remaine are found in the rooke wibioh the geologists call the Devonizn and Masisejppion seriee, jhe black s Jate, which crops out at the foot of Waldens Ridge, as woll as the limestones lying above it, which form the side of the mountain to the wat of Dayton, are layers belonging to these sories. These rocke are full of the ramains of animal life.

Then come the pesicd in which the ancient plants olsurishod and producod great cal dopoaise. the age which hes been callsd the Carhoniferous. Tho extencivo col dapocits of the Tenneseg cool field. the edge of which caps the mountain a tow milee west of Dayton, ara of this age, and wonderfully preeervod plant remajns aze found in the eletos which Ite on for of the different coal eeams. This is a fact well know by the onsi minsrs of this section. And what hea been atated abors er to Tennsesea ie but one Illustration of how the diffexant genibo

Nolson - 5.
periods passod and lifo avveloped cver the acreth.
and even when the Gurboniforous poriod in tho devolomont of the eorth hes boon roechod, wo aro still meny millions of yoors back frow the aco of man: Wo mat still pass thru many goological timo periods, thru that ε ge known as the Permian, when land vortobratos first arose; thru the Triassic, when reptillian momals arose; thru the Jurassic, whey flying reptiles wore in oxistonce. This was the Age of Reptiles. Then into the Cretacousk whem flowering plants came into oxistonce, and a great group of the reptilos known as dinnosaurs, became extinct.

And thon we come to that period in tho oarth's history, at the boginning of which the ancient mamals and birds wore first known to exist. Fossil ramains show cleerly that birds evolved from flying reptiles. This is tho Great Age of Mammals. Thru this period, the modern lifo forms doveloped. A period of glacial activity too place, during which five distinct glacial stages existed, ono efter the othor, with four interglacial intervols, onc man-like beings came into being at least the beginning of this timo. Such, very briefly, is an account of the evolution of the earth from Cambrian time to the present, with a brief outline of the life forms which existod during those differont periods. We know that this took many millions of yours, and yot we also know that the earth existed untold millions of years botora Cambrion time.

For the formtion of the earth and its early stages we must turn to the scionce of Astronomy. The relations of the earth to the stars and the plonets are show in the dopths of the heavans, and there must exist in the heavens thaso cosmic
conditions which gove rise to our world and the other planets of our systom. Through tho tolamcope and spectroscope, the astrononers have solved meny of these socroto.

But whet of the azo of the oarth masured in yoars as wo messure other happenings? From the briof outline just given one can soc that it hes boen in existenco unknown millions of yocrs, but just how many it is impossiblo to sey.

We can, however, measuro beck to the more recent events in Goologocel time to the last ico ago, beforo which we know man existed, and got a foirly accurcto rosult, in terms of years. Geologists from the scientific strdies they havo mado, hevo reached the conclusion that from the present time beck to tho close of the elaciel state lnown es the Wisconsir, the poriod of tho lest ice stago, that the time interval is hetweon twontytwo thouscnd and thirty-five thousand yoors, and man is known to have existod before this time.

One of the most accurate woys in which to measure such time intervels, is by measuring and counting the light colored ane derk colored bands of clay, depositod by the melting of the ice sheot in the fresh water lakes which oxisted on the odge of thoso continental \&leciors, as it retroated to its present position in the notith polar regions. Each dark layer of clay was laid down during one winter and each light layer during one summer. By such detailed studies, it has boon detemined thet it has taken, epproximately, 5000 years for the glaciers of Fweden to melt back 270 milos, and it is further known that time this melting took place 8500 yocrs ego. Wo know that tho gleciors in North America extonded into tho nor thern part of tho Uni ted

Nolson - 7 .

Statos and roachod as for south as tho orio River. Wo know that now their southern odgo lios for to the north in Northern Conade over a thousand nilos eway. We know thet it took approximatoly 4000 yours for the continontel gilecior which last covered the New England Statos to melt back from Hartford, Connecticutt, to St. Johnsburg, Vormont. This is only one way of measuring in years some of the more recent geological happenings. There are many other wothods the could bo givon if it wore necessary.

In connection with ovolution, it is especially of interest to note that the relative agos of the rocks cor respond elosely to the degroes of complexity of crgenization shown by the fossils in thoso rocizs. The simplor organisns being found in the more anciont rocks, woh type of orgonism bocoming more and more complex as we come noarer to the prosont doy, man amd his fossil and cultural remains boing no excoption.

It, thereforo, appears that it would be impossible to study or toach ceolozy in Tenressoe, or elsewhere, without using the thoory of ovolution.

